A Rawlsian view of CSR as a Multistakeholder model of corporate governance

By
Lorenzo Sacconi
Definition of CSR

- who runs a firm (entrepreneurs, directors, managers) have responsibilities that range
 - from the fulfilment of *fiduciary duties* towards the owners
 - to the fulfilment of analogous *fiduciary duties* towards all the firm’s stakeholders
Fiduciary duties

- A subject has a legitimate interest but is unable to make the relevant decisions
 - He (the *trustor*) delegates decisions to a *trustee* entitled with the authority to choose actions and goals.
 - For a fiduciary/authority relationship to arise, the trustor must accept it because it is functional to some interests he already holds

- Hence these interest are legitimate claims over the trustee
- These claims impose fiduciary duties on the trustee who must be accountable for that
Stakeholders

- individuals or groups who have essential interests “at stake” in the running of the firm both because
 - they make **specific investments** in the firm
 - undergo the ‘**external effects**’, positive or negative, of the transactions performed by the firm
- These are both “**primitive**” stakeholders considered in terms of the **urgency** of their interests (relevant for social welfare analysis) and **not** according to their power of threat
The scope of CSR

the model extends the concept of fiduciary duty

– from a mono-stakeholder perspective (where the sole relevant stakeholder is the owner of the firm)

– to a multi-stakeholder one in which the firm owes fiduciary duties to all its stakeholders (the owners included)
The transaction-cost rationale for extending fiduciary duties

- **Why do companies exist?**
 - Contracts are incomplete,
 - **unforeseen** contingencies
 - Investments may be **specific**
 - Behaviors are **opportunistic**: try to renegotiate incomplete contacts

- **Renegotiation induces the expectation that investments will be expropriated**
 - it destroys incentives to make efficient investments
......extending fiduciary duties (continues)

• the firm Corporate Governance structures allocate residual rights of control to the owners, i.e. authority over the ex ante not contractible aspects of transactions
 – Renegotiation will not threaten them
 – their investments are safeguarded from the other stakeholders’ opportunism

BUT......

• The firm is team production: many stakeholders cooperate by means of their specific investments (human capital, social capital, trust etc.)
There is always “abuse of authority”

• Those who holds residual control appropriate the full surplus by expropriating other stakeholders’ investments

• If fiduciary duties are only attached to ownership
 – Non-controlling stakeholders will not be protected,
 – while their contracts are nevertheless incomplete (contracts are not the solution)

• That’s why “control structures are always second best”: some have the incentive to over-invest, others have the incentive to sub-invest

• Equity and efficiency problems cannot be separated
A first Rawlsian intuition: the maximin principle as the proper balancing criterion among different stakeholders claims (1)

• For mere incentive reasons those who are in the position to carry out the most important investment must be granted residual control,

 – which in general will induce inequalities and gives him the opportunity to abuse non-controlling stakeholders

• But, since the firm is a joint venture for mutual advantage, disadvantaged non-controlling stakeholders must also benefit from cooperation.
Rawlsian imaximin principle as the proper balancing criterion among different stakeholders claims (2)

• Non controlling (worst off due to abuse of authority) are granted the right to veto any control structure
 – unless it is not the better one for the worst-off stakeholder themselves (with respect to all the available alternatives)

• Thus, to legitimate a unilateral control structure,
 (wherein ownership is held by the stakeholder undertaking the most important investment)
 ➢ the implementation of a redress principle is necessarily required.
A comprehensive structure of corporate governance (1)

• The firm’s control structure legitimacy is granted if the residual control right is accompanied by further fiduciary duties owed the subjects not controlling the firm.

• ‘extended governance’ should comprise:
 – the residual control right (ownership) allocated to the stakeholder with the largest investments at risk and with relatively low governance costs.
 – fiduciary duties of those who effectively run the firm (directors and managers) owed to owners,
 – fiduciary duties of those in a position of authority in the firm (the owner and/or delegated directors and managers) owed to non-controlling stakeholders.
A comprehensive structure of corporate governance (3)

- Fiduciary duties owed to non controlling stakeholder include
 - the obligation to run the firm so that
 - the company distributes to each *strict-sense-stakeholder* a *‘fair share’ of the surplus*
 - while the broad-sense stakeholders are *immunized* against negative externalities;
 - effective *accountability* to the non-controlling stakeholders in terms of relevant information related to their legitimate interests and rights
 - the right to be *represented* in corporate bodies where they can exercise effective *supervision* over the owner’s and directors’ compliance with their extended fiduciary duties
A comprehensive structure of corporate governance (4)

• According to this revision of the corporate governance structure, boards of directors or managers appointed by owners
 – owe a **special fiduciary duty** to the ‘residual claimants’ who have directly delegated authority to them (*via* a narrow fiduciary proviso).
 – This duty applies, however, only under the constraint of a **more general fiduciary proviso** relative to *all* the stakeholders
 ➢ which is defined *via duties owed to non-controlling stakeholders*.
Objective function of the SR firm

- Run any corporate activity in the way that it
 - minimizes negative externalities affecting stakeholders in the broad sense
 - maximization of the joint surplus and its simultaneous fair distribution, as established by the impartial cooperative agreement among the stakeholders in the strict sense
 - When more than one option is available in the above-defined feasible set, choose the one that maximizes the residual allocated to owners (the shareholders).
CSR as a matter of explicit self-regulation, soft law and social norms

- Not mere managerial discretionary decisions, but
- Rules of behaviour established through explicit social norm and standard
 - general principles of fair treatment for each company stakeholder,
 - principles of inter-stakeholder fair balancing,
 - precautionary rules of behaviour, so that fiduciary duties are put in practice by rules of conduct that pre-empt opportunistic behaviour in typical critical situations;
CSR as a matter of explicit self-regulation, soft law and social norms

• Agreed upon by both firms and stakeholders through (voluntary) forms of multi-stakeholder social dialog (deliberative democracy)

• Self-imposed by firms on themselves without external legal enforcement, but instead by means of the internal adoption of statutes and codes of ethics, self-organization, training, auditing, and reshaping of incentive

• Monitored and verified by third-party independent civil society bodies;
Complementarities: regulation and self-regulation

• Effective CSR self-regulation is a viable option only within an legal environment that does not obstruct it

• Such obstruction would occur in the case of too narrow definitions of the firm’s objective-function such as

 – shareholder value maximization as the sole corporate goal

• The 2006 UK company law reform is an example of how the board duties may be enlarged to legitimate balancing decisions

• it opens the door to self-regulatory CSR standard that more precisely specifies CSR principles and guidelines

• On being asked to account for their decisions, boards would appeal to such codes in order to justify their behavior to stakeholders.
The original position perspective

• In order properly to assess the implementation of CSR, take the perspective of a hypothetical ‘state of nature’
 – It logically precedes historical legal constructs that may legally obstruct the emergence of such a normative model.

• Hence
 – Admitted that company laws do not obstruct proper self-regulation,
 – endogenous beliefs, motivations and preferences of economic agents (companies and stakeholders) are the essential forces driving the implementation of the CSR model of multi-stakeholder governance.
Aoki’s definition of institution is appropriate

- An institution is “a self-sustaining system of shared beliefs about a salient way in which the game is repeatedly played”
 - It is a rule not in the sense of “rules exogenously given by the polity, culture or a meta-game”,
 - but in the alternative sense of “rules as being endogenously created through the strategic interaction of agents, held in the minds of agents and thus self-sustaining”

- In order for beliefs to be shared by agents in a self-sustaining manner (....) the content of the shared beliefs” must be “a summary representation (compressed information) of an equilibrium of the game (out of the many that are theoretically possible).

- The salient feature of an equilibrium may a have corresponding symbolic representation inside the minds of agents and coordinate their beliefs” (Aoki 2001)
Limitation of Aoki’s def. of institution

- Institutions in the above game-theoretical definition only *ex post* tell the best action to each player.
 - once the participants shared knowledge that they have already reached an equilibrium state
- They tell players only **how to maintain the existing pattern of behavior** supported by the existing beliefs system.
- Institutions thus are **devoid** of any significant **normative** meaning and force.
- On the contrary, norms like constitutions or laws, ethical codes, shared social values, organizational codes of conduct and procedures **have primarily a prescriptive meaning**
Integration of the definition of institution

• A second component of a proper definition of institution is the mental representation of a norm,
 – expressed by utterances in the players’ language concerning values and obligations,
 – With prescriptive and universalizable meaning able to justify shared acceptance by all participants in a given interaction domain.

• It enters their shared mental model of how the game should be played and hence becomes the basis for their coordination on a specific equilibrium.

• The key point is explaining how a normative beliefs system (preceding the evolution of the corresponding equilibrium), becomes accepted by all agents in the relevant domain.
The social contract as integration of the definition of institution

- The best justificatory account for norms, entailing ex ante shared acceptance, is the social contract model.
- Contractarian norms result from a voluntary agreement in an hypothetical original choice situation which logically comes before any exogenous institution is over-imposed on a given action domain.
- To define the agreement, the social contract model sets also aside threats, fraud and manipulation because these resources contingent on arbitrary historical institutions.
- Thus a norm arises and can be maintained only because of the voluntary agreement and adhesion of agents.
The structure of the **stakeholders / firm interaction**: a trust game

<table>
<thead>
<tr>
<th>Action</th>
<th>A (stakeholder)</th>
<th>B (owner of firm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust</td>
<td>(2, 2)</td>
<td>(2, 2)</td>
</tr>
<tr>
<td>Not Trust</td>
<td>(0, 0)</td>
<td>(-1, 3)</td>
</tr>
</tbody>
</table>

Only one Nash Equ : (0, 0) Trust is impossible in one-shot relationship
Multiplicity of equilibria in the repeated trust game

- as in the repeated PD, if all the repeated strategies are permitted, many equilibria are possible
- The dashed area is all made up of equilibria in pure and mixed iterated strategies
Given the interaction stakeholder/firm a Rawlsian SC plays two roles

• The **normative role**:
 “what pattern of behavior the firm and its stakeholders **must select from the set of possible equilibrium patterns** when they put themselves under the *ex ante* standpoint of an impartial agreement?”

• The **motivational role**:
 “**what and how many equilibrium** patterns of behaviors would *ex post retain their stability and motivational force* if firm and stakeholder were able to agree on a CSR standard in an *ex ante* perspective?”
1) The need for a normative balancing principle

• “Stakeholder” is **descriptive**:
 – there are **many** classes of individuals holding a stake in the firmbut
 – Stakeholder claims may also be **conflicting**

• Stakeholder theory needs a **normative** principle in order to say
 – **how to balance conflicting claims**,
 – **how to identify those claims that generate fiduciary duties**

• Thus a **normative criterion** is needed to find out a balance that
 – Can be impartially accepted in advance by all the stakeholders
The normative role of SC in the selection of an impartial equilibrium

• The function of a fairness principle is to give impartial reasons for singling out a unique equilibrium solution amongst the many possible.

• This will be a particular equilibrium point coinciding with an outcome rationally acceptable.

• Note that the normative principle is used to single out an equilibrium point within the equilibrium set of the game.

• The perspective is that of an ex ante impartial choice, but it now concerns equilibria, i.e. game solutions that are self-enforceable.
The constitutional contract theory on the control and responsibility structure of the firm

- A two-step collective decision-making among potential members of a coalition S.
 - At time t = 0 the allocation of rights is decided (not only ownership and control but also redress), and this determines the control structure exerted over the productive coalition S
 - At time t = 1 the right-holding individuals undertake investment decisions with a view to subsequent transactions
 - At time t = 2 events occur which are unforeseen by the initial contract.
 - At time t = 3 a new bargaining game begins, under the given each allocation of rights
The model

- This problem is modelled as a compounded bargaining game G_c of the constitutional and post-constitutional decisions
 - First: a constitutional bargaining game is carried out at time $t = 0$, where chosen is a set of strategies (rights) by means of which
 - second: a subsequent game can be played at time $t = 3$ within the limits of the given constitution
The GN game

- In the background there is a non cooperative ‘state of nature game’ to which the players will resort if they fail to agree on a constitution.

- The ‘state of nature game’ admits a single solution d^* which is mutually disadvantageous to all parties.

- The ‘state of nature’ arises when contracts are left incomplete, so that the parties undergo reciprocal opportunistic behaviour.
The Gc game

- **Gc** outcome space P consists of the ‘state of nature’ equilibrium d^* + the convex combinations all other possible outcomes

- Also symmetric translation of P are admitted (exchanges of position

- Agreements over a constitutions can generate whatever logically possible outcome

- The former was a *non-cooperative* game, whilst Gc is *cooperative*

- players enter a thought experiment for they assume that whatever possible agreement is implementable
A distinctive feature of constitutional choice

- Players simply choose a subset I of the set of joint strategies admissible in G_c.
- Each subset I is a limitation on the players’ freedom.
- Thus choosing any subset means choosing a ‘constitution’.
- Each subset (constitution) in turn defines a cooperative sub-game G_i whose outcome space P_i is a subset of the space P.
- These are coalition games in which the players negotiate on how much they obtain from cooperation according their “constitutional rights”.

![Diagram showing the concept of constitutional choice with subsets I and outcome spaces P_i.]
Nash B.S. for the choice of the constitution

- In G_c the solution is to be found within the symmetrical outcome space generated by all the logically possible subsets of G_c.

- All the points in P are seen as solutions for possible post-constitutional games.

- The selected constitution is such that the corresponding post-constitutional game will distribute equally the cooperative surplus calculated with respect to the symmetric G_c space.

- This constitution distributes rights so that no party has an ex post advantaged bargaining position.

Max Nash bargaining product in P and post-constitutional solution in P_7.
Institutional Feasibility

• So far *every logically possible* constitution has been considered (a world in which it would be possible to allocate decision rights in whatever proportion)

• More *realistic* is that only a *certain number* of restrictions on the set \(G_c \) are institutionally feasible.

• Assume that only *exclusive allocations* of property *rights* on the physical assets are institutionally *feasible*.

 – *Not* allowed *intermediate* degrees of authority,

 – feasible constitutions are such as *to bias* post-constitutional bargaining heavily in favour of one or other party.

• the N.B.S. *is not the same* than that relative to the all-inclusive payoff space of GC (the choice must fall within the set of *institutionally feasible* solutions)
Choosing constitutions under feasibility

- Two feasible constitution G1 and G2 are considered.
- Defined for G1 is more efficient than that of the alternative G.
- Ownership must be given to 1.
- However, 1 must still take account of 2’s claims and compensate him.
- The solution must be calculated within the payoff space P3 generated as the convex hull of the combinations of outcomes belonging to P1 and P2.
- By a utility side-payments 1 redresses 2 until the cooperative surplus is distributed according to the criterion of relative need.
Difficulties in the constitutional choice among institutionally feasible governance structures

- **Instability** of the equitable solution based on utility side payments when the only underlying feasible outcomes are asymmetric outcome space (property rights)

- The convex combination of points in P1 and P2 may not correspond to any feasible outcome

- The utility side payment is an outcome corresponding to a point in the convex combination but outside both P1 and P2,

- **No implementation mechanisms may exist for it**
Binmore - Rawls theory of social contract

• The Game of life is a repeated game with multiple equilibria played by two player (1 and 2) that can take the social role and identity of Adam and Eve.

• The “original position” is a thought experiment for the (stable under symmetric exchange of personal positions) selection of one equilibrium within the equilibrium set.
Original position and symmetry

- **Translation of the payoff space** X_{AE}: For each "physical" outcome of the original game (X_{AE}) there is a symmetric translation that generates a symmetric outcome (a point in X_{EA}) with the players’ position reversed,

- **Empathetic preferences** allow us to use the **same utility units** under the exchange of Adam and Eve positions between player 1 and player 2

- Each player (player 1 endowed with V_1, and player 2 endowed with V_2) considers the entire set of possible outcomes as if he/her were in the condition to occupy both the role of Adam and Eve
Equiprobability and convexity

• “Veil of ignorance”: only equal probability combinations of each outcome with its own symmetric translation must be considered

• Deus ex machina hypothesis: some external mechanism guarantees that whatever agreement on a convex combination will be implemented

• Results: equal probability combinations of utilitarian solutions or NBS
No Deus ex machina

• Unfortunately God is not ready to enforce any ex ante agreement: hence keep the veil of ignorance but skip the “Deus ex machina”:

• The state of nature does not allows for an all encompassing enforcement mechanism

• Need to consider ex post stability (self-enforceability): **only ex post self-enforceable outcomes** are feasible ex ante agreement

• What lies in the convex combination may not correspond to any feasible outcome

Admissible outcomes without the *Deus ex machina* but under “veil of ignorance” hypothesis
Egalitarian solution

- **Restriction to the symmetric intersection sets**: only here convex combination corresponds to equilibria no matter the result of the lottery
- The solution must lie on the **bisector**
- Even in asymmetric space NBS predicts the egalitarian solution
Rawls vindicated (also for the non kantians)

- The egalitarian solution corresponds to the Rawlsian maximin.
 - Eve’s payoffs identify the disadvantaged player both as E or E’, and they are maximised under solution

- Egalitarianism basically rests on the requirement of ex post equilibrium plus the ex ante requirement that asks making judgments acceptable under the “veil of ignorance”
 - Just because we cannot hypothesise an external enforcer, given empathetic preferences, we are constrained to make and agreement within the symmetrical subset intersection XAE ∩ XEA
A Rawlsian theory of corporate governance

• Consider **two different institutionally feasible** subsets G1 and G2 derived form the all-inclusive set of the possible governance structures.

• By design define them as corresponding to two outcome spaces P1 and P2 consisting of Nash equilibria

• The “**veil of ignorance**” hypothesis is then introduced
 – i.e. players consider *each* feasible constitution from an impartial standpoint by allowing the *mutual replacement of the roles*
 – This means that a *symmetrical translation* with respect to the Cartesian axes is taken *for every* candidate outcome space,

• A solution **must be invariant** under the symmetric translation of the respective outcome spaces.
A Rawlsian theory of corporate governance(1)

• **PROPOSITION I:**

• Given any pair of feasible convex outcome sub-spaces \(P_1 \) and \(P_2 \), relative to a pair of constitutions and their respective post constitutional sub-games \(G_1 \) and \(G_2 \),

 – **if** the “veil of ignorance” hypothesis is introduced,

 – **but** the “Dues ex machina” hypothesis is rejected,

 – **then** the Constitutional Choice selects a constitution corresponding to the bargaining sub-game \(G_i \) endowed with a feasible outcome sub-space \(P^* \)

 ➢ **such that** the **egalitarian solution** in \(P^* \) dominates the **other egalitarian solution** belonging to the alternative feasible sub-space.
A Rawlsian theory of corporate governance (2)

• Given any two feasible convex outcome sub-spaces P_1 and P_2 and their symmetric translations P_1' and P_2',

• no matter other characteristics of the relevant spaces,

$$\sigma^2* > \sigma^1*$$

if and only if

$$P_1 \cap P_1' \subset P_2 \cap P_2'$$

– where σ^* is the egalitarian solution within the respective outcome space P_i

– and the order relation $>$ should be understood as strictly superior unanimous acceptance (strong Pareto dominance).

• Inclusiveness of the symmetric intersection is the only property relevant to the constitutional choice of sub games
A Rawlsian theory of corporate governance (two property regimes and their outcome spaces)

\[\sigma_2: \text{NBS relative to the payoff space } P_2 \]

\[\sigma_1: \text{NBS relative to the payoff space } P_1 \]
A Rawlsian theory of corporate governance (symmetrical translation of the payoff space P_1)

Symmetrical Intersection set $P_1 \cap P_1$ of the feasible outcome spaces P_1 and P_1'
A Rawlsian theory of corporate governance

(symmetrical translation of outcome space P2)

Symmetrical intersection set P2 ∩ P2' of feasible outcome spaces P2 and P2'
A Rawlsian theory of corporate governance (simultaneous symmetrical translation of both the outcome spaces P1 and P2)

The two symmetrical intersection sets such that $P_1 \cap P_1' \subset P_2 \cap P_2'$

Figure 5.1

Diagram illustrating the intersection sets P_1 and P_2 with their symmetrical counterparts P_1' and P_2', showing that $P_1 \cap P_1' \subset P_2 \cap P_2'$.
A Rawlsian theory of corporate governance
(Egalitarian pareto dominant solution)

σ_1^*: Egalitarian NBS in the intersection of feasible spaces $P_1 \cap P_1'$ dominated by σ_2^*:

σ_2^*: Egalitarian-“realistic” NBS in the intersection of feasible payoff spaces $P_2 \cap P_2'$, such that it dominates σ_1^*.

U: NBS of the utopian space P of all the logically possible constitutions of the firm’s control structures.

Fig. 5.1
A Rawlsian theory of corporate governance(3)

• Pareto-dominance *only between egalitarian solutions* is relevant for the unanimous choice of constitutions,

 – *no matter how other characteristics of the payoff spaces are settled*.

• The propositions states that

 – the level of unanimous acceptance of a constitution *dominates* the level of acceptance of another constitution

 – only if its *egalitarian* solution is Pareto-superior to the egalitarian solution of the alternative,
Challenging received wisdom: **equity comes before efficiency**

- Consider the two feasible outcome spaces P_1 ad P_2
- P_1 includes both the Utilitarian and Kaldor-Hicks solution
- but nevertheless P_2, with its symmetric translation P_2', generates an intersection set that **includes** the intersection of P_1 and its own symmetric translation P_1'.
- Then any rational social contract **must prefer the constitution** of the firm corresponding to the outcome space P_2 - no matter the efficiency properties of P_1.
- In fact under the “veil of ignorance” the Utilitarian and Kaldor-Hicks solutions are **not feasible**
- The feasible “intersection” of P_1 and P_1' is less efficient than both P_2 and P_2'
Challenging received wisdom: welfare VS fairness?

• **PROPOSITION II:**

 • In order to select an institutional form of corporate governance under the constraint of being ex post stable – i.e. implementable by an equilibrium point – *do not bother with welfare maximization* or its proxy, wealth maximization.

 • Instead, look for the **best “egalitarian solution”**, — in the qualified sense of being the **best monotonic Nash bargaining symmetric solution** within the intersection set

 — resulting from **symmetrical translations** of the outcome equilibrium sets annexed to feasible constitutions.
Challenging received wisdom: (Kaplow and Shavell)

• “Our argument for basing the evaluation of legal rules entirely on welfare economics, giving no weight to notions of fairness, derives from the fundamental characteristic of fairness-based assessment:

• such assessment does not depend exclusively on the effects of legal rules on individual’s well-being. As a consequence, satisfying notion of fairness can make individual worse-off, that is, reduce social welfare.

• This thesis is particularly compelling because also in important and simple situations, i.e. “symmetric contexts – those in which all individuals are identically situated – it is always the case that everyone will be worse off when a notion of fairness leads to the choice of different legal rule from that chosen under welfare economics” (p.52).
Consider the following case

E = (2.5, 2.5): egalitarian solution in the intersection P1 ∩ P1' and bargaining status quo in P*

S1 = (8,3): solutions U, NBS and K-H in P1

R = (6, 3.5): maximin solution in P1 and NBS in P*

E = (2.5, 2.5): egalitarian solution in the intersection P1 ∩ P1' and bargaining status quo in P*

fig.6.1
Challenging received wisdom: (Kaplow and Shavell)

- The **feasible** payoff space P_1 is so asymmetric that by considering its translation P_1', the intersection set is a very narrow region of the plan.
- and the egalitarian solution in $P_1 \cap P_1'$ proves to be Pareto-dominated by S_1, where both the maximal utilitarian solution and the maximum Nash bargaining product reside.
- This seems to be a case where keeping to fairness makes every players worse off.
- In fact, player 1 could try to convince player 2 to relinquish egalitarianism with the reasonable argument that there is a mutual advantage in switching to S_1.
But this is not the case

• Giving egalitarianism priority over welfare maximization is perfectly reasonable because it allows selecting a specific PO improvement.

• Egalitarian solutions constrain Pareto efficiency in so far as egalitarianism is taken to be the proper starting point from which acceptable Pareto improvements are calculated through a “second thought” in bargaining.

• This solution is the maximin point R on the north-east frontier of the space P1, where player 2’s payoffs (the disadvantaged player) are improved as much as possible, no matter what the marginal payoff improvement of player 1.

• Pareto improvements with respect to E are achieved by moving along the frontier of P1, and they end as soon as no better improvement in player 2 payoff is possible.

• This solution dominates E, but it makes sense only because E is taken to be the appropriate status quo.
Received wisdom: a mild libertarian cannot be but egalitarian (VS. Hayek)

• Much new-institutional theorising about governance is based the implicit postulate that institutions design cannot go further than spontaneous orders.

 – normative presumption that freedom of choice must be respected

 – But also because only spontaneous orders are self-enforcing norms, such that they do not require the intervention of an external Deux ex machina

• But a mild libertarian would not reject that individual agents may enter the “original position”

 At least in order to make an assessment of possible spontaneous order outcomes under random permutation of social roles (A and E) taken by any player
A mild libertarian cannot be but egalitarian (VS. Hayek)

- However constraining the moral point of view with a care for freedom of choice and stability (no *Deus ex machina*) has dramatic consequences to the libertarian point of view:

 - Only governance structures providing for egalitarian payoffs allocations are acceptable.

- Far from ostracizing the “mirage of social justice” in the small scale society constituted by the stakeholders of a firm, a moderate libertarian cannot be but egalitarian in the selection of the firm governance structure.
Back to the trust game: which equilibrium should be justified according to the contractarian theory?

$$X_{EA} \cap X_{AE}$$

the north-west boundary

Equilibrium selection “under the veil of ignorance” works quite well in the case of TG
Unique selection of an equilibrium point in the trust game under role permutation

- Intersection coincides with the permutation axis from space X_{AE} to space X_{EA}
- i.e. the North-West boundary of the original payoff space
- The egalitarian solution in the symmetrical intersection $X_{AE} \cap X_{EA}$ coincides with the NBS of the original game (2,2)
- Applying the “veil of ignorance reasoning without “deus ex machina” provides a reason for selecting the intuitively fair outcome (2,2)
But ex ante justification does not answer the ex post stability problem

- Agreement behind the veil of ignorance solves the justification problem,
 ➢ unique solution
- But what about the situation beyond the veil of ignorance?
- Why should the player be sure that other players will carry out the corresponding strategy when they are back to game of life?
- Equilibrium selection must guarantee shared knowledge that the equilibrium selected is in fact the equilibrium played beyond the veil
- But why should players believe that what they recognize to be justified behind the veil of ignorance is also going to be carried out beyond the veil of ignorance?
Again the problem of multiplicity in the repeated TG

One of the many mixed strategy equilibria:
\((e, (0.6, \neg a; 0.4, a))\)

Stackelberg equilibrium:
\((e, (0.25, \neg a; 0.75, a))\)
Another equilibrium may be ex post focal to the firm

- the player B-type make a commitment on the mixed strategy \((e, (0.25, \neg a ; 0.75, a))\)

 - B may develop a reputation for being this type by playing the two pure strategies with the attached probability throughout all the repetitions of the game

- Hence player A necessarily enters (average positive payoff is 1, equal to stay out

 - this gives B an average expected payoff is 4.75

 - Then player B’s best response is to stick to this type

- Hence the preferred (by B) mixed strategy equilibrium is that in which player B (the firm) abuses two third of times, appropriating the largest part of the surplus
2) Motivational role of Rawlsian SC. Are all the equilibria equally capable to provide incentives?

• May a norm agreed from an ex ante (pre-play) perspective, affect the motivational force exerted by different equilibria in a game?

• A positive answer would amount to a restriction on the set of equilibrium points that have motivational force ex post over the players’ behavior.
Motivational role (continues)

- The conjecture is that a preference for equilibrium strategies may depend not just on their outcomes but also on the level of conformity that any equilibrium exhibits in regard to the agreed norm,

 - if the Social contract generates a modification in the players’ payoffs in favor of those situations wherein no significant deviation from reciprocal conformity occurs,

 - then it may be the case that the overall motivational strength reinforcing an equilibrium behavior may be integrated by an additional motivational factor

 - that in the end confines overall motivational strength only to a subset of the possible Nash equilibria (refinement)
A truly Rawlsian theory of norm compliance: the sense of justice

- **Endogenous solution of the stability problem:**
 - when institutions are consistent with principles agreed under a veil of ignorance, we develop a sense of justice that carries with itself the desire to stabilize the institutions.

- **Definition of the sense of justice:**
 “Given that a person’s capacity for **fellow feeling** has been realized by forming attachments (to lower level institutions) and given that a society’s institutions **are just** and are **publicly knows to be just**, then this person **acquires** the correspondent **sense of justice** as he recognizes that he and those for whom he cares are the beneficiaries of these arrangements” (p.491.)
Conformist contractarian preferences

- The “Conformist-contractarian preferences theory” tries to capture this philosophical view in a psychological game theoretical model

- References and previous works

 - Genakoplos et al. (1989) Games and Econ Behav.
 - Rabin (1993) Amer. Econ. Review
 - Grimalda and Sacconi (2005) CPE
 - Sacconi (2006/7) JoBE
 - Sacconi and Faillo (2009) CPE
The “Conformist-contractarian preferences theory”

- Players are involved in a non cooperative game G
 - only suboptimal Nash equilibria are feasible
- In a pre-play communication stage players agree on a principles (a CSR norm) for solving the ensuing non-cooperative game
 - By an “ex ante” ideal bargaining game B(G) under a veil of ignorance, players agree on a principle of justice T (viz. Nash bargaining product)
 - These agreements are not binding, so that they can be understood as “cheap talk”
Conformist contractarian preferences theory (continue)

- But players attach “motivational force” (a desire) to conformity to the CSR principle,
- The effectiveness of the disposition to conform is conditional on the other players expected behavior
 - **conditional conformity**: how much player A contributes to full conformity, given A’s belief over player B’s action
 - **reciprocal expected conformity**: how much player A believes that player B contributes to full conformity, given A’s prediction of B’s belief over A’ action
Conformist preferences: elements of the formal model

• **First**, a principle $T (=\text{Nash Bargaining Solution})$, which is a distributive criterion of material utilities.

 – Players **adopt T** (the norm) by **agreement** in a pre-play phase, under veil of ignorance, and employ it in the settlement of a **consistency ordering** over the set of possible states σ

 – The highest value of T is reached in situations σ where material utilities are **distributed** according to **maximal consistency** with the principle T (max NBS)
Conformist preferences: elements...(2)

- **Second,** an index of conditional *conformity*: the extent to which - given the other agents’ expected actions - the first player is directly responsible for deviation from the maximum value of T.

- **Third,** an index of *reciprocal conformity*: the extent to which the *other* player is expected to be personally responsible for a deviation from the maximisation of T, given what he (is expected to) expects from the first player’s behaviour.
Definition of the two personal indexes of conformity

a) Player i personal index of conditional conformity to T (varying from 0 to -1):

\[f_i(\sigma_i, b_i^1) = \frac{T(\sigma_i, b_i^1) - T^{\text{MAX}}(b_i^1)}{T^{\text{MAX}}(b_i^1) - T^{\text{MIN}}(b_i^1)} \]

- \(b_i^1 \) = belief of player i over player j’s action
- \(T^{\text{MAX}}(b_i^1) \) = maximum attainable by the function T given i’s belief over j’s strategy,
- \(T^{\text{MIN}}(b_i^1) \) = minimum attainable by the function T given i’s belief over j’s strategy,

b) Estimation function of player j index of reciprocal conformity to T (varying from 0 to -1)

\[\tilde{f}_j(b_i^1, b_i^2) = \frac{T(b_i^1, b_i^2) - T^{\text{MAX}}(b_i^2)}{T^{\text{MAX}}(b_i^2) - T^{\text{MIN}}(b_i^2)} \]

- \(b_i^2 \) = player i’s second order belief over the belief of player j over the choice of player i
Conformist preferences: elements... (3)

• *Fourth*, an exogenous parameter λ representing the motivational force of the agent’s psychological disposition to act on the motive of reciprocal conformity with an agreed norm.

• *Five*, steps two and three coalesce in defining an overall index F of conditional and expected reciprocal conformity for each player in each state of the game.

 – This index operates as a weight (between 0 and 1) on the exogenous parameter λ deciding whether λ will actually affect or not (and, if so, to what extent) the player’s payoffs.
The overall utility function in explicit form

The overall utility function V_i is the linear combination of the two components (material and ideal)

$$V_i(\sigma_i, b_i^1, b_i^2) = U_i(\sigma_i, b_i^1) + \lambda_i \left[1 + f_i(\sigma_i, b_i^1) \right] \left[1 + \tilde{f}_j(b_i^2, b_i^1) \right]$$

- **Material component**
- **Psychological component**

Weight of the psychological component

$\lambda_i \in [-1,0]$. Player i’s index of conformity. Given i’s beliefs (b_i^1) about j’s strategy

$\lambda_j \in [-1,0]$. Player j’s index of conformity (from the point of view of i). Given i’s beliefs about j’s beliefs (b_i^2) about i’s strategy.

NOTICE: The appropriate notion of equilibrium is Psychological Nash Equilibrium (Geanakoplos et al. 1989): beliefs on how the game is played enter the player’s utility payoff.
What does it happen in the one shot TG with conformist preference?

- Where $\beta > \alpha > \delta > \gamma$, note that $\gamma - \delta < 0$

- In order to calculate T: δ is taken as the status quo

- T is $\Pi(u_i - \delta_i)$ for any state (δ, δ), (γ, β), (α, α)

- $T(e, \neg a) = (\alpha - \delta)^2$, $T(e, a) = (\gamma - \delta)(\beta - \delta)$,

- $T(\neg e, a) = T(\text{no-e, no-a}) = T(\text{no-e, } \sigma_i) = (\delta - \delta)^2 = 0$
The one shot trust game under conformist preferences

Matrix (a): TG normal form

<table>
<thead>
<tr>
<th></th>
<th>$\neg a$</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>4,4</td>
<td>0,5</td>
</tr>
<tr>
<td>$\neg e$</td>
<td>1,1</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Matrix (b): T values at each state

<table>
<thead>
<tr>
<th></th>
<th>$\neg a$</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>$(4-1)(4-1) = 9$</td>
<td>$(0-1)(5-1) = -4$</td>
</tr>
<tr>
<td>$\neg e$</td>
<td>$(1-1)(1-1) = 0$</td>
<td>$(1-1)(1-1) = 0$</td>
</tr>
</tbody>
</table>

Matrix (c): psychological TG with conformist utilities included with $\lambda = 2$, two psycol equ.

<table>
<thead>
<tr>
<th></th>
<th>$\neg a$</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>$(4+\lambda) = 6$, $(4+\lambda) = 6$</td>
<td>0, 5</td>
</tr>
<tr>
<td>$\neg e$</td>
<td>1,1</td>
<td>$(1+\lambda) = 3$, $(1+\lambda) = 3$</td>
</tr>
</tbody>
</table>
Conformity of mixed strategies

• Players assess how mixed strategies generate states, described **according** the distributive principle T

• when a player B mixed strategy is considered, conditional on entrance by A, **what players take care of is the probabilistic combination of two states described according to the value of NBF (=T)**

• “Randomizing” means that **two realisations of the distributive principle** $T - (\gamma - \delta)(\beta - \delta)$ and $(\alpha - \delta)^2$ - may occur

• Thus that the appropriate value of T related to a mixed strategies, given A’s entrance, is the **expected value** of the NBF given the probability mixture of the two states

\[
T(e, \sigma_i) = (1-p) \left[(\gamma - \delta)(\beta - \delta) \right] + p(\alpha - \delta)^2
\]
Mixed strategies and the repeated trust game under conformist preferences

• Payoff of mixed strategies reflects exactly the frequency in which strategies produces states of affairs with different level of conformity to the principle T

• For example, the pair of conformist payoffs (3.62, 5.62) corresponds to the following pair of repeated strategies:

 – Player B mixes his types $\neg a$ and a with frequency 0.6 and 0.4

 – Player A plays repeatedly his strategy e as long as he does not see player B employing abuse with a frequency higher than 0.4, but if this frequency is exceeded he switch to “$\neg e$ forever”.

 – This produces a mixture of conformity and non conformity with the related conformist payoffs
The psychological payoff space

• Payoffs of pure and mixed strategies are represented and their translations into the psychological game payoff space (in red).

• Up to the mixed strategy $\sigma_B^{0.39}$ no psychological utilities accrue to players and hence a region of the basic TG payoff space does not translate into the psychological payoff space.
Pure strategy equilibria

First, the status quo point (1,1) is translated toward North-East along the bisector to a point with overall utilities (3,3), which is also a psychological equilibrium.

Second, thanks to the conformist weights $\lambda = 2$, the outcome (4,4) where the NBS is maximized translates to the point (6,6), which is also a psychological equilibrium.
About equilibria in player B’s mixed strategies

- the entry strategy \(e \) of player A cannot be rewarded with any psychological conformist utility until the T expected value induced by a mixed strategy \(\{(p, \neg a); (1-p, a)\} \) is not positive.

- As long as this threshold is not exceeded, psychological payoffs do not add to the material payoffs of both players A and B under any of such pairs (mixed strategy, entrance).

- Then.....
1. Stackelberg equilibrium is ruled out

- Note the importance of the mixed strategy $\sigma_B^{0.25}$.
 - This was player B’s Stackelberg mixed strategy that would correspond to the preferred (by the firm) equilibrium strategy of the material repeated TG.
 - It is noticeable that the pair $(e, \sigma_B^{0.25})$ is not any more an equilibrium in the conformist (psychological) repeated TG.
 - No psychological utility is added to payoffs for this outcome.
2. In many cases A’s “giving in” is not a best reply to a mixed strategy

- The **threshold** that allows mixed strategies to gain support from psychological conformist utility is reached at the mixed strategy

\[\sigma_B^{0.307} = \{(0.307, \neg a); (0.693, a)\} \].

- Here the expected value of T is **zero** for any A’s choice, so A is **fully conformist** by choosing either e or \(\neg e \).

- Playing the mixed strategy is **partially conformist** also to player B, because the T value given A’s entrance would be minimized by playing \(a \).
2. In many cases “giving in” is not a best reply to a mixed strategy (follows)

But adding just a bit of psychological utility does not mean that B’s mixed strategy induces “enter” as A’s psychological best response.

— The player A’s overall payoff from \(-e\) is still higher than the overall payoff from giving in to player B’s mixed strategy, i.e.

\[
U_A \{[(0.307, \neg a), (0.693, a)], \neg e\} = 3 > U_A \{[(0.307, \neg a), (0.693, a)], e\} = 1.84.
\]
3. In general the B’s best reply to “giving in” is not to abuse

- **Assume** player B has chosen a repeated mixed strategy whereby he has been able to accumulate a reputation.

- That *for the first time induces* player A to enter.

- Then he (B) immediately would recognize the incentive to switch to a strategy that employs the strategy $\neg a$ with the highest frequency.

- It follows that

 - player B’s best reply to player’s A entry is to **deviate** from any mixed strategy σ_B^n to $\neg a$.
MAIN PROPOSITION

- Given a repeated TG with pure and mixed strategies,
 - whereby a psychological game with conformist preferences is defined,
 - so that the motivational exogenous parameter λ is great enough to guarantee the existence of a psychological equilibrium in correspondence to $(e, \neg a)$,
 - Then: the game’s psychological equilibria are **only** the **two** in pure strategy $(e, \neg a)$ and $(\neg e, a)$,
 - and **no** equilibrium points in mixed strategies exist.
Refinement of the equilibrium set

- Even though generating a psychological game from a basic one shot Trust Game enables as usual the determination of new equilibrium points
- When we step from the one-shot TG to the repeated TG - where usually many equilibria are admitted
- Then transforming the payoff space by means of conformist preferences has a powerful effect in reducing the psychological equilibria to a subset of the Nash equilibria (Refinement)